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Results in fl] are extended to the case of vibrations of shallow and nonshallow 
viscoelastic (and elastic) shells. A uniqueness theorem is proved in a some- 
what broader class of functions than in Cl]. 

1. General formulation of the problem. The fundamental notation 
used in [1] is presented below with slight modifications. 

Let o be the element in some complete separable Hilbert space H, with the scalar 

product (wl.oz). A, is a linear unbounded operator given on some set J!?,, compact 
everywhere in H,, with the following properties : 

1) A, is a symmetric positive-definite operator. 
2) If o E E 1, then A,o E H,. 

The scalar product and the norm are introduced in E, 

(01.02)2 = (&w . a7 11w = b*@)z 

The complement of E, in the norm (1 - II2 is the space Hz. 
3) .-il possesses the eigenvectors qnforming a complete system of vectors in the 

space H,. 
E2 (a, b) is a set of elements o (t) dependent on the parameter t such that o E 

E,, ot E H, (*) for any a\( t 6 b , and o as an element of H, and at as an ele- 
ment of H, are continuous functions of the parameter t in [a, bl. 

E, (a, b) is a subset of elements from E, (a, b) representable as the finite sums 

x:dk(t)Xk, where dk (t) E c(l) (a, b), Xk E H,. 
The closure of E2 (a, b) in the norm 

b 

is called the space H3 (a, b) . 
4) If 61, -+ W,-, weakly in H, (a, b), then O, -+ o,, strongly in H,uniformly 

in all a < t < b. 
It has been shown in Cl] that H, (u, b) is a separable space and E, (a, b) is com- 

pact everywhere in H, (a, b). 

D” is a subset of H, (0, T) formed by the closure of a subset of functions from 
E, (0, T) in the norm of Ha (0, 2’) such that dk (2’) = 0. 

An equation of the following kind is considered : 

*) The subscripts t, a:, denote differentiation with respect to t, %. 
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Ott = - Alo - A20 -B’(o,o)-Kq+F(t) (1.1) 
with the initial conditions 

+cl=g, oi jt=a = 11 (1.2) 

Equation (1.1) differs from (1.10) in [l] by the term B’ (a, o), which is a nonlinear 
operator of two variables and represents the effect of internal “viscous” forces. 

The assumptions in [l], relative to the operators _I,, L$2, K , are presented below 
with slight modifications. 

The relationship A,o + A,w = gradHI @ (w) holds on E, , where @ is a func- 
tional given on H, and 

@ (00 -t 0,) - Q @u) = (As00 - &w) + a (WI, ~1 (I*31 

The 00, 01 E Hs in (1.3) are arbitrary ; the operator A, is nonlinear, A, is a 
bounded linear operator from H, ,in H, ; the functional a (oo, or) is such that 

lim ] a 1 I/ o1 1j2-1 = 0, if (j ml 11% 3 0. 
5) If o E H, (a, b), then 

0 ,( “(Kw,.w,)dt< m, 
I 

a< b. 
(7. 

6) @ is a nonnegative functional in H, such that 11 o [I2 < (pl (r) follows 
from 0 (0) < 7. Here and henceforth qk (r) are functions bounded in each finite 
segment of variation of f. 

7) If 00, o, E H, (0, T), then (A, o,.A,co,,) is a function summable in 
[O, T] , If ~1)~ + o. weakly in H, (0, T), then 

T T 

lim ’ (&to,,. A401) dt = 5 (A,o, . A& dt 
n4m a 

0 0 

lim~laldfl~w[&- = 0, if I) 6% 113,0,T --+ 0 

0 

Additional conditions besides those used in [l] are required for the investigation of 

(1.1). 
8) If o E E, (a, b), then @ (0) is summable in [a, b]. 

The operator Bt (a, co) with the domain of definition a E E, (0, T), W E El 
has the form B t (a, o) = gradH,coj (C’a- Do). 

Here C’, D are nonlinear operators acting in the space H, from H, (0, t) and 

Hs , respectively, for all O\< t < T Moreover, for any a E H, (0, t) and oo, 

o, E H, the following relationship is valid : 

(C’a. D (coo -j- aI)) - (C’aa Dq,) = (C’a.A, (tiao, aI)) + P (a, w 01) 

where the operator A, (oO, or) is linear and bounded in the variable oi from H, into 

Ii,, where 1 im 1 p I )I or lj2-l = 0, if llwl 11% + 0. 
9) The time segment [O, Tl can be separated into rr (7’) parts 0 = to < t, < 

. . . < t,, = T so that the operator C’ has the form C’a = Clfa + . . . + C,,‘a. 
Here the operator C Irf a depends only on the values of the element aEH, (0, 2’) 

on the segment [t k t, tk]; Ckt a f 0, if t < tk-l. Moreover, for any element W c _ 

E 3 (0, t k) the following inequalities are satisfied : 



1062 I.I.Vorovich and L.P.Lebedev 

(1.4) 

10) If or, a E Hs (0, T), then (C’o .A, (0, a)) is a function summable on 
[O, I’] bounded uniformly if /I 0112, I/U 11 2 are bounded uniformly on [0, T] and if 
O, --f o. weakly in Ha (0, T), then 

T t 

lim ’ (C’o,. A5 (o,, a)) dt = ’ C’o, - A, (oo, a)) dt 
n-cc I s 

0 0 

11) limilP(a,oo,~~)ldtll~lll~lO,~ =O, if II w 1j3,0,~ 3 0 

12) For aiy arbitrary element w E E, (0, T) for all O< t< T 

As in [ll, the concept of the generalized solution is introduced. 
Definition 1.1. An element o E Ha (0, T), satisfying the integral relation 

T 

s 
’ {- (q.oQ + (AwA4 + @+A, (w 01)) 4 

O (K ot.O1)-(F.ol)}dt-(h.ol)Il=o=O 

and the first of the initial conditions (1.2) in the following sense : 

limIIo-g~~l = 0 for t--t0 (1.5) 

for arbitrary oki E D” is called a generalized solution of (1.1) with the initial condi- 

tions (1.2). 
The generalized solution is sought approximately by the Bubnov-Galerkin method in 

the system of differential equations 

Uhnt . xl) - (F.xJ = 0, 1 =f,...,m 

m 

%I = 2 Qrnl (0 Xl 
I=1 

with the initial conditions 

Qrnl(O) = (g*xJ9 qmt’ (0) = (h* Xr) (1.7) 

Here XI is some complete system in H,, which is considered orthonormalized in H, 
for convenience. 

Theorem 1.1. let Conditions (1) -(12) be satisfied. In this case (1.1) with the 
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initial conditions (1.21 has at least one generalized solution in the sense of definition 

1.1 on the segment 10, T] for arbitrary T, provided that 

T 
hE:r, ge Hs, 

s 
II F Iii’ dt < 30 

0 

As in El], Theorem 1.1 results from the following theorem. 

Theorem X.2. let all the conditions of Theorem 1.1 be satisfied and let Xr be 

some system complete in Hz and orthonormal in H,. In this case the system of differ- 
ential equations (1.6) with the initial conditions (1.7) has at least one solution on the 

whole segment [O, 2’1 for each m. The set of approximate solutionso,is weakly 
compact in H, (0, 2’) and contains an infinite subset o,, each of whose limit points 
is a generalized solution of (1.1) in the sense of the Definition 1.1. 

Structurally, the proof of Theorem 1.2 agrees with the proof of Theorem II in Cl]: 
the system (X.6), (1.7) is reduced to an operator equation with a completely continuous 
operator, and then the Schauder fixed point theorem of a completely continuous operator 
is used. The existence of a solution of (1.6), (1.7) in some finite time segment 10, T,] 
is proved by such a method, and is then extended to the whole segment [O, T] in a 
finite number of steps. From a priori estimates of the solution of the system there 

results that the sequence of approximate solutions is a weakly compact set in H, (0,T). 
Using Conditions (7) and (lo), as in [l J, it can be shown that each weak limit of this set 
is a generalized solution of the problem. 

The main part of the whole proof is to obtain the following a priori estimates: 

i/ %t Ii1 < %, /I 0, jjz 4 %, I/ f’& /b,o,T & n23 (L81 

Here and henceforth m&are some positive constants, 
The method of mathemati~l induction is used for the proof: considering the esti- 

mates satisfied on the segment [0, tk+], they must be extended to the segment lo, 

t,J. The proof of the estimates on the segment [O, t,] is obtained from the proof on 

IO, t,] for k = 1. 
The system (1.6) can be written as follows: 

The lth equation in (1.9) is multip~ed by qmg , the equalities obtained are added and 
integrated with respect to time between the limits 0 and t, and then with respect to 
the parameter t between 0 and t,. The part dependent on the values of w,on the seg- 

ment [tA_t, t,] is extracted from this equality and the Condition (5) is taken into ac- 
count. Consequently 

Values of w,only on the segment EO, tk-Ll are present in L (w,) . Using Condition 
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(9), the estimate 

can be deduced from the inequality obtained above. 
To prove the estimates (1.8) all the manipulations carried out above are repeated, 

except the second integration with respect to the parameter t. These estimates are 

derived, as in [l], from the inequality obtained by such a method taking account of the 

already proved inequality (1.10) and Conditions (9), (12). 

2. Problem of rhell vibrrtionr, The following version of the nonlinear 
theory of viscoeiastic shells will be considered lJ2-j: 

1 5 a, 
eli = eii + 2 q12 = Al + 

Al, u2 1 
* + kk3 + 2 $12 (122) (2.1) 

2.512 = 2e12 +a212 = +(%),,+f$(+&),, - 2k12U3 + 91$2 

x11 = - A1%al - Ala*$2(A1A2r1 (1 22) 

2x12 = - -41-42-1(~1~l-l)al - A2A1-1(~2A2-1)cc, 

Tij = Tiju + J’ij~ = &j/cl~kl + f Cijkl (tt Z) EEL (z) do 

0 

The following notation is used here: o = (ui, zz2, us) is the displacements of points 
of the shell middle surface S* with the internal coordinates a,, a,; Ai2, 2C = 0 
are coefficients of the first quadratic form of the surface S*; kij are the curvatures 
of s*; Eif are the tension and shear strains ; xij are the curvature changes; I& are 
the turning angles of the coordinate lines ; Tij are the shear stresses, Mij are the 

moments ; 2h (al, a2) is the shell thickness; Eijk,, Cijkl, Dijkl, Bijkl are the 
shell elastic and viscous characteristics 

In the “shallow” theory case (V. Z.Vlasov version) ql= A1-insal (i = 2). In the 

“nonshallow” theory case q1 = A1-luSal - kllul (I t 2) (k,, = /cl1 = 0). 
The Hamilton-Ostrogradskii principle dictates the following definition of the gene- 

ralized solution: r 

ss 
’ ’ {TijhEii + MijGxij} A1A2dalda2dt = 5 1 {Fibi + (2.2) 

Ofi On 

2phuit6U,,} >< AlAzdalda2dt + ’ hiGuiAlA2dalda2 
s I t=o 
n 

if the boundary conditions are 

o+o, $n=o 
I 

(2.3) 

Here aeij = 6eij + ‘12 ($i6$j + $j&$i); Q is the domain with boundary r occu- 
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pied by the shell planform ; the variation sign 6 means that the possible displacement 
60 which is considered zero for t = T must be substituted in place of the vector func- 
tion 0 ; Fi is the distributed load ; p is the density. 

The initial conditions are the following: 

ui (t=lJ = gi, ~if It=0 = hi (2.4) 

Let the following conditions be satisfied : 
a) Q is a connected bounded domain which is a finite sum of star domains ; its 

boundary r consists of a finite number of closed contours of the Liapunov class Jr (m, 

0); 
b) Ai, Aiak, kij, kij,,, o, h are measurable functions bounded on 52 , where 

0 < % < Ai, k3 ti < Q; 

c) The energy inequality Eijh.l~ij~lrl > m,EijEijr m7 > 0 is satisfied for all sym- 
metric tensors Eij ; 

d) The functions 

Cijkl (tv z), Bijkl ct, %)V $ cijkI (t, z)9 & Bijkl (t, z) 

are measurable in the set of variables t, z on the triangle 0 < z < t < T, and for 

all t E [O, T] are summable in [O, t] in the variable r, and for all ‘G E [O, T] 
are summable in [r, T] in the variable t, where 

t 

S 
t-a 

1 +j- Cijkl (t, S) 1 02 + ‘f 1 -j& Cijkl (S, r) 1 O3 G ‘PS $1 
T 

(P4@)-0, if h-0 O<r<z+X<t<T 

The correspondence between the notations in (1.1) and (2.2) is indicated below. In 

this case the space Hi is the space L, (52) x L, (Cl) x L, (52). The operator A, 
is determined from the equalitv 

Here Tijl/ (ekl) means that only the part linear in o must be taken in the expression 

Tijz! in (2.1). AS in [3], it can be shown that the corresponding space Hz is the sub- 

space W = W,l (Q) x IV,’ (9) x J$‘,z (Q), where the norms of H, and W are 
equivalent on H, 

4) = -& 
s, 

{Tijy&ij + MijgXij} A1 A, da, da, 

The viscous terms in (2.2) correspond to the operator Bf. 
Definition 2.1. The vector function o E H, (0, T) satisfying (2.2) for 

any vector function 6w E Do and the first of the initial conditions (2.4) in the sense 
of (1.5) is called a general solution of (2.2) with the boundary and initial conditions 

(2.3). (2.4). 
Theorem 2.1. Let the Conditions (a) -(d) be satisfied. In this case the problem 

of the vibrations of a viscoelastic shallow (and nonshallow) shell has at least one gene- 
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ralized solution in the sense of the Definition 2.1, if 

The proof of Theorem 2.1 consists of verifying all the conditions of the abstract The- 

orem 1.1 upon compliance with the conditions of Theorem 2.1. Conditions (1) - (7) 
of Theorem 1.1 are carried over word-for-word from [l] and are verified as in [l]. It 
must just be noted that the functions I#~, ~#a should perform the role of w,, wy in 
both the shallow and nonshallow shell cases when verifying the sixth condition (see [l], 

p. 780). The validity of the remaining conditions, except Conditions (9) and (12) is 
established by the same methods as the validity of their similar parts of Conditions (l)- 
(7) of Theorem 1.1. 

The first part of Condition (9) of Theorem 1.1 relative to the form of the operator 
Cf follows from the form of the operator integrated with respect to the time t . The 
appropriate estimates (1.4) must just be verified. As an illustration, the characteristic 
term of the left side of the first inequality (1.4) is estimated (ak = tk - t,_,) 

c (z, e) E (e) deq} dQ dz dt 1 = 

,c t . 

I- !.;I, *!_,a c (T, z) &2 (z) as? dz dt - 

t ssi c, (z, 0) & (e) de& (t) dQ at dt + 
fk-1 tk-_l n th___1 

‘k 

Integration by parts, interchange of the order of integration, elementary integral in- 

equalities and Condition (d) of Theorem 2.1 were used in the computations. Positive- 
definiteness of the functional @ relative to the variables ~~j, Xii results from Condi- 
tion (c) of Theorem 2.1. A corollary of this fact and Condition (d) is the first estimate 
of (1.4) if ?L k is sufficiently small. 

Just as Condition (12) of Theorem 1.1: the second estimate of (1.4) is verified analog- 

ously. 
Theorem 1.2 is carried over directly to the case of a viscoelastic shell. 
Theorem 2.2. Let all the conditions of Theorem 2.1 be satisfied and let Xl be 

some system of vector functions complete in H, and orthonormal in H,. In this case, 
the system of differential equations of the Bubnov-Galerkin method (constructed analog- 

ously to the system (1.6), (1.7)) has at least one solution in the whole segment [o, T] 
in each approximation. The set of approximate solufions is weakly compact in H, (0, 
i”) and each of its limit points is a generalized solution of (2.2) in the sense of Defi- 
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nition 2.1. 

Note 1. In the shallow theory case, equations in which the influence of the inertia 
of longitudinal shell motion is neglected can be considered, i. e. the terms 9&itfr i = 
1, 2 are missing in (2.2). Equations (2.2) separate naturally into a linear system of 

equations in ul, IL% and still another equation. From this system which is the plane 
problem of linear quasi-static viscoelasticity in the functions or, uz in curvilinear CO- 

ordinates, the displacements ui, u2 are found in terms of uQ by a functional method 
and are substituted into a new equation. The generalized solution concept is introduced 

analogously to [ 11. Theorems 2.1, 2.2 turn out to be valid for these equations, but 
morover,the following uniqueness theorem is satisfied. 

Theorem. Let all the conditions of Theorem 2.1 be satisfied. In this case the 
generalized solution of the vibrations equations of a shallow viscoelastic shell, written 
without taking account of the inertia of the lon~tudinal shell motions, is unique in the 

class of functions from Hs*(O, I’) (the corresponding norm in Hz* is just the energy of 
elastic shell bending) for which 

11 U~ai=j \\~~+~cn), 8 > 0, i, i = I,2 

are finite for all 0 < t < T if the shell characteristics (the middle surface, the outline 

F, the thickness .Jz) are sufficiently smooth and if 11 Fi i/~e+~(o), E > 0, i = 1,2 are finite 

for all 0 < t < T. 
Note 2. All the results obtained above are valid even in the particular case, the 

case of elastic shell vibrations. 
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